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Abstract—A distributed autonomic system adapts its con-
stituent components to a changing environment. This paper
reports on the application of autonomic management to a dis-
tributed storage service. We developed a simple analytic model
which suggested potential benefit from tuning the degree of
concurrency used in data retrieval operations, to suit dynamic
conditions. We then validated this experimentally by developing
an autonomic manager to control the degree of concurrency.
We compared the resulting data retrieval performance with
non-autonomic versions, using various combinations of net-
work capacity, membership churn and workload patterns.
Overall, autonomic management yielded improved retrieval
performance. It also produced a distinct but not significant
increase in network usage relative to one non-autonomic
configuration, and a significant reduction relative to another.
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I. INTRODUCTION

We are interested in distributed storage services that
harness surplus storage capacity. The perceived performance
of such services depends on their configuration parameters
and on various dynamic conditions. For given conditions,
one configuration may be better than another, with respect
to measures such as resource consumption and performance.

For our investigation we used a simple replicated storage
service [1], in which a client performing a read operation
may retrieve data from any of a number of identical replicas
stored on various servers. The client may decide which
replica to attempt to retrieve first, and also whether to
retrieve replicas sequentially or in parallel.

This sequential/parallel retrieval behaviour is controlled
by the client’s degree of concurrency configuration param-
eter (C). When C is set to 1, replica retrieval attempts are
made sequentially, continuing until a replica is successfully
retrieved. At the other extreme, when C is set to the number
of replicas, all retrieval attempts are initiated concurrently,
terminating when the first successful result is returned.

The optimal C value depends on dynamic conditions, giv-
ing potential scope for autonomic management [2]. A high
value is desirable when there is significant unpredictable
variability in the times taken to retrieve individual replicas,
or when servers exhibit a high failure rate. In such cases
a parallel retrieval strategy is likely to return a result more
quickly than a sequential strategy.

Conversely, a low C value is desirable when there is low
variability in retrieval time and there is a network bottleneck
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close to the client. In this situation the low variability
removes any performance benefit of parallel retrieval, while
the effect of the bottleneck is that parallel retrieval would
increase retrieval time due to contention.

We developed an analytic model to investigate the poten-
tial of autonomic management in this context. As it indicated
promising results, we then implemented a simple autonomic
manager to control the C parameter depending on monitored
conditions. We experimentally evaluated the effects of the
manager on data retrieval time as perceived by the user, and
on network usage. The experiments were conducted using a
deployed storage service, subjected to various membership
churn, workload and network speed patterns.

The autonomic manager successfully detected and cor-
rected situations in which the C parameter was set inap-
propriately, without any prior knowledge of the network
conditions or workload, yielding an improvement in per-
formance when compared with statically configured clients.
Network usage was slightly increased compared to one non-
autonomic configuration, and reduced relative to another.

II. RELATED WORK

Distributed storage systems adopt various strategies to
attempt to optimize performance. In PAST [3], the underly-
ing peer-to-peer overlay Pastry [4] transparently prioritizes
servers with good performance during routing operations.
This means that Pastry first routes to servers with good
performance when a data item is requested.

In CFS [5], Ivy [6] and GFS [7] a client determines, for
an individual request, the server from which it fetches a
replica based on a performance measure computed by some
Server Ranking Mechanism (SRM). The objective of such
a SRM is to improve data retrieval performance by ranking
servers based on predictions about which host will result in
the shortest retrieval time. This is based on the assumption
that historical monitoring data can be used to predict future
performance of specific hosts.

We do not know of any other work using dynamic control
of the degree of concurrency.

III. EFFECTS OF CONCURRENT RETRIEVAL

In this section we develop a simple analytical model
to demonstrate the effect of the C parameter in various
situations. We assume a distributed storage system with the
following properties:

• For a given data item, a client knows the addresses of
up to R different servers storing identical copies.



• Replicas can be individually verified, thus only one
replica need be retrieved successfully.

• If a replica cannot be retrieved, the client attempts to
retrieve one from a different server.

The model calculates the overall time to complete a user
retrieval request; we use it to compare the effects of low and
high C values. We also investigate the effect of availability
of an SRM oracle that is able to perfectly rank a set of
servers with respect to the time needed to retrieve a replica
from each one. This gives insight into the potential benefits
of a practical SRM.

A. Analytical Model

The analytic model is based on a simplified distributed
storage service comprising a single client communicating
with N servers. Each data item is replicated on R servers.
The client and servers are connected via an interconnection,
whose internal network links are assumed to exhibit sig-
nificantly higher bandwidth and lower latency than the links
between participants and the interconnection. Thus, the time
to transfer data across the interconnection is assumed to be
negligible.

Each user-level read request is serviced by a get operation
executed on the storage client. This results in one or more
fetch operations to retrieve replicas from specific servers.

The parameters of the model are as follows:
• R: the replication factor
• S: the average data item size
• C: the degree of concurrency, constrained to either 1

or R for simplicity
• P : the probability of failure of a fetch operation
• F : the average time for the client to detect failure of a

fetch operation
• Bi: the perceived bandwidth between participant i and

the interconnection
• Li: the perceived latency between participant i and the

interconnection
The expected get time is influenced by these parameters

and by the availability or otherwise of an SRM oracle. When
C is low, yielding largely sequential replica fetches, the
number of fetches increases with P , as does the resulting
get time. An SRM oracle is only useful with a low C value.
By definition the oracle always chooses a non-failing server,
thus the get time is governed by the lowest fetch time.

The lowest fetch time is also the most significant factor
when C is high, since the get operation completes when
the first fetch operation completes successfully. Additionally,
when the client link to the interconnection is a bottleneck,
the fetch and get times increase with C due to contention
between concurrent retrievals.

1) Fetch Time: We first derive the fetch times for indi-
vidual replicas in terms of the model parameters. The fetch
time for replica i has three components:

• trequest server i: the time for the request to reach server
i from the client

• tresponse server i link: the time for the replica data to
reach the interconnection from server i

• tresponse client link: the time for the replica data to
reach the client from the interconnection

The size of a request message is negligible, so only
latencies are significant:

trequest server i = Lclient + Lserver i (1)

Time tresponse server i link is determined by the replica size
and the bandwidth and latency of the server link:

tresponse server i link =
S

Bserver i
+ Lserver i (2)

The last component is calculated similarly, but the available
bandwidth is shared among C concurrent replica transfers:

tresponse client link =
S(

Bclient

C

) + Lclient (3)

The overall fetch time for server i is:

tfetch i = 2Lclient + 2Lserver i +

S

(
1

Bserver i
+

C

Bclient

)
(4)

Observe that a high C value always raises individual fetch
times relative to a low C value, but that the effect becomes
less significant as the client bandwidth increases.

2) Get Time: The significant components of the overall
get time differ, depending on the C value and whether or
not an SRM oracle is used. The sensible configurations are:

case description C SRM oracle
1 low concurrency, no SRM 1 no
2 low concurrency, with SRM 1 yes
3 high concurrency, no SRM R no

In case 1, the get operation starts by fetching a replica
from a randomly selected server, completing if the replica
is retrieved successfully. If the fetch operation fails, with
probability P , this is detected after time F , and a different
replica is tried. The overall get operation fails if all individ-
ual fetch operations fail, with probability PR.

The expected total time for a successful get operation is
the sum of the average fetch time and the time involved
in dealing with any failures. The number of failures, k, lies
between 0 and R−1. For a given k, the time involved is kF ,
while the probability of that number of failures occurring is
P k. Hence, overall, the expected time to deal with failures
is the weighted sum for all values of k:

tget case 1 = tfetch avg +

R−1∑
k=0

(kFP k) (5)



In case 2, low concurrency with SRM, the get operation
initiates a single fetch operation from the best server as de-
termined by the oracle. Since its predictions are perfect, this
operation succeeds if any non-failed servers exist. Thus the
individual fetch time, as modelled in formula 4, determines
the overall get time.

In case 3, high concurrency with no SRM, the get op-
eration initiates C concurrent fetch operations. Again, the
fastest successful fetch determines the overall get time.

tget cases 2 and 3 = tfetch min (6)

Observe that a high C value (case 3) eliminates the influence
of the failure detection time F , but, as noted earlier, raises
the overall time when there is a client bottleneck.

A low C used with an SRM oracle is the optimum
combination, since failures do not contribute to the overall
time, nor are individual fetch times increased by client link
contention. Unfortunately a perfect SRM is not realizable.
However, even an imperfect SRM that makes better pre-
dictions than chance may be beneficial, in that using its
predictions to decide fetch order for low C may prioritize
servers with better than average response times.

From this, we hypothesize that a good client strategy is
to set C to a low value when there is a client bottleneck,
or there is little variability in response times among servers.
The rationale for the latter is that if all concurrently fetched
replicas take a similar time, there is little benefit gained by
being able to complete after the first is received. Further-
more, replicas should be tried in the order recommended by
an SRM that monitors server response times.

Conversely, C should be set to a high value in situations
when there is no client bottleneck and there is high, un-
predictable, variability among servers. In this case an SRM
will be ineffective, and the best server response time will be
significantly lower than the average.

Given that the optimum value of C depends on the
location of the bottleneck, if any, and the variability in
server response times, dynamic adaptation of C offers sev-
eral potential benefits. Firstly, the bottleneck location may
not be not known statically, or may change dynamically
due to client mobility. Even if it were known statically,
a requirement for manual configuration of C may be un-
desirable. Secondly, dynamic adaptation allows response to
unpredictable variation in server response times, perhaps due
to fluctuations in server or network load.

While this model is simplistic, it has served its purpose
in providing sufficient indication of the potential benefits of
dynamic C adaptation to justify implementing and evaluat-
ing an autonomic manager and SRM.

B. Example Scenarios

We illustrate the model by plotting the predicted get times
for selected parameter values, showing the effect of various
fetch failure probabilities for the three configuration cases.

Failure of fetch operations may be caused by faulty servers
or by churn in the server population.

We fix the following parameter values:
• R: 4 (replication factor)
• S: 500KB (average data item size)
• F : 2s (average time to detect failure)
• Li: 100ms for client and all servers (latency)
Figure 1 shows the model’s predictions for a client-side

bottleneck with the following bandwidth values:
• Bserver i: 10MB/s for all servers
• Bclient: 0.1MB/s
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Figure 1: Effect of fetch failure probability on get time, with
client-side bottleneck.

This shows that low C is desirable at all failure rates in this
case. The benefit of the SRM oracle in being able to predict
a non-failing server becomes more significant as failure rates
increase.

Figure 2 shows the model’s predictions for a server-side
bottleneck with the following parameter values:

• Bserver i: 0.1MB/s for all servers
• Bclient: 10MB/s
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Figure 2: Effect of fetch failure probability on get time, with
server-side bottleneck.

This shows that all three client configurations give similar
results for low failure rates, with high C or an SRM oracle
giving better results as failure rates increase.

IV. AUTONOMIC MANAGEMENT OF CONCURRENCY

An autonomic manager to control C was imple-
mented using the Generic Autonomic Management Frame-



work (GAMF) [8], [9], structured around a moni-
tor/analyze/plan/execute cycle [2].

An instance of the manager running the control cycle
was installed on each client, while an instance of the SRM
was installed on the client and on each server. Details
of the manager’s control cycle are given in the following
subsections.

A. Monitoring

Latencies and bandwidths were monitored by the SRM
instances, using periodic pings with various packet sizes.

The following quantities were monitored by the manager:
• perceived latencies between the client, interconnection

and servers, as reported by the SRM
• perceived bandwidth between the client, interconnec-

tion and servers, as reported by the SRM
• rate of initiated fetch operations
• rate of failed fetch operations

B. Analysis

The following metrics were derived from the monitored
data:

• FFR: the fetch failure ratio, comprising the ratio of
recent failed to initiated fetch operations, or 0 if no
operations were initiated

• EFT : the expected fetch time for each server, estimated
from recent measured latencies and bandwidths

• FTV : the fetch time variation between servers, com-
prising the ratio of the standard deviation in the most
recent EFT values, to the mean

• BN : the bottleneck value, comprising the ratio of
recent monitored client-interconnection bandwidth to
the mean of server-interconnection bandwidths

It was decided to base FTV on estimated rather than
actual observed fetch times, since this allowed values to be
generated independently of workload. Note that the metric
considered only recent variation between servers; it did not
take account of variation in the performance of individual
servers over time.

C. Planning

During each iteration of the autonomic cycle, the manager
used the generated metrics to decide the next value of C,
which was allowed to take any integer value from 1 to R1.
Changes to C were triggered when observed metric values
crossed certain high and low thresholds for each metric,
defined by statically configured parameters of the autonomic
manager. The manager’s policy was defined as follows:

if C < R then
if FFR is high and FTV is high then
C ← R

else if FFR is high or FTV is high then

1Note that this is less restrictive than the analytic model.

C ← C + 1
end if

else if FFR is low and FTV is low then
if BN is low then

C ← 1
else

C ← C − 1
end if

end if
The policy was designed to increase C in situations when

there was a high server failure rate or a high variation be-
tween server response times, and to do so more aggressively
when both of these conditions held. Conversely, the policy
reduced C when the failure rate and variation were both low,
more aggressively if there was a client-side bottleneck.

D. Execution

The execution phase involved simply setting the C param-
eter. The client get algorithm was also adapted to incorporate
advice from the SRM, so that whenever C was set at
less than R (i.e. not all fetch operations were issued in
parallel), higher ranking servers were prioritized. The SRM
did not attempt to predict probability of server failure, but
considered only recent history of server connectivity by
selecting the server with the lowest recent EFT value.

V. EXPERIMENTAL EVALUATION

Three configurations of the autonomically managed client,
using different values for the FFR threshold parameter,
were evaluated against two non-managed clients using fixed
low and high C values respectively. The effects of the
various policies on performance and resource consumption
were measured in a local-area storage service deployment,
exposed to various patterns of data item size, workload,
server churn and network conditions.

In each experiment, 16 storage servers were deployed
in an isolated test-bed. Traffic was routed through a traffic
shaper, allowing various network conditions to be simulated.

A. Experimental Parameters

The following data item sizes were used:
• 0.1MB
• 1MB

The following workload patterns were used:
• heavy-weight, comprising 300 sequential get operations
• light-weight, comprising 10 sequential get operations,

with 120s delay between each successive operation
• variable-weight, comprising 10 repetitions of a pattern

containing 3 sequential get operations followed by 120s
delay

The following churn patterns were used:
• none, in which all servers remained available
• high, in which each server alternated between on-line

phases of about 40s and off-line phases of about 30s



• temporally varying, in which the servers alternated
between no- and high-churn phases lasting about 5min

Higher churn rates led to higher fetch failure rates, since
servers were more likely to be unavailable when required.

The following network patterns were used:
• static with client bottleneck, in which network con-

ditions remained constant throughout, with greater
connectivity for servers than client: server band-
width 2.8MB/s, server latency 0, client bandwidth
0.4MB/s, client latency 20ms

• static with server bottleneck, in which network con-
ditions remained constant throughout, with greater
connectivity for client than servers: server bandwidth
0.4MB/s, server latency 20ms, client bandwidth
9.8MB/s, client latency 0

• temporally varying, in which the bandwidths and laten-
cies of the various links randomly varied every 10s

The shaped bandwidth figures were chosen to fit within
the available physical bandwidth.

B. Management Policies

The configurations of the management policies are shown
in table I. Policies 1 and 2 involved statically configured
C values with no autonomic management. Policies 3 to 5
all used the same threshold values for the FTV and BN
metrics, differing only in the FFR thresholds. This meant
that the autonomic policies varied in the fetch failure rates
required to trigger action.

policy TFFR TFTV TBN initial C
1 - - - 1
2 - - - 4
3 0.1 0.2 0.8 1
4 0.3 0.2 0.8 1
5 0.5 0.2 0.8 1

Table I: Management policy configurations.

For policies 3 to 5 the frequency of the autonomic cycle
was set to once per minute. Network latency and bandwidth
observations were made by the SRM every 15s.

C. Results

A series of experiments was performed, evaluating all
combinations of data item size, workload, server churn and
network conditions. Each experiment was repeated three
times. Due to space constraints we highlight the most
significant observations here; full results are reported in [1].

Figure 3 shows observed get throughput for the various
policies, averaged over all experiments2. It can be seen that
all autonomic policies yielded similar results, with a small
but significant improvement over the static low-concurrency

2Throughput is reported here, rather than specific get times, since
multiple data item sizes are included.

configuration (policy 1), and a greater improvement relative
to the static high-concurrency configuration (policy 2).
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Figure 3: Get throughput averaged over all experiments.

Figure 4 shows the observed network usage figures,
averaged over all experiments. Again there was little to
distinguish between the autonomic policies. They yielded a
distinct but not significant increase in network usage relative
to policy 1, and a significant reduction relative to policy 2.
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Figure 4: Network usage averaged over all experiments.

Figures 5a and 5b illustrate the effects of autonomic
management in one example experiment, showing the pro-
gression of C values over time. This experiment involved
large data items, high churn, heavy-weight workload and
client-side bottleneck. The effects of policy 4 are omitted
since they were almost identical to those of policy 3.

In this case low C gave the best get throughput. This was
due to the SRM being able to detect good servers since
network conditions remained static, while the client-side
bottleneck caused network contention for higher C values.
It can be seen in the plots that the autonomic managers
successfully deduced that C could be kept at a low level
and maintained it close to the optimum. As expected, policy
5, which used the highest threshold to decide when FFR
was low, set the lowest C values.3 Non-integer values for C

3At first glance it appears that all the managers were over-eager to adjust
C, given the saw-tooth patterns. However, it should be remembered that
changing C does not incur any significant cost. This might be more serious
in other autonomic schemes—for example, if the parameter being tuned
controlled the physical location of data.
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Figure 5: C progressions for various network conditions.

occur due to averaging of multiple runs.
Figure 5c shows an experiment with large data items,

low churn, light-weight workload and temporally varying
network conditions. High C gave better results, since the
varying network conditions hampered the SRM’s ability to
predict server performance. It can be seen that the autonomic
managers detected that C could be kept at a high level.

VI. CONCLUSIONS

We have demonstrated that autonomic management of the
degree of replica retrieval concurrency in a distributed stor-
age client can achieve a small but significant improvement in
performance at a small cost of additional resource consump-
tion. Under changing conditions, autonomic management
can adapt concurrency to suit prevailing conditions, while
under constant conditions that are not statically known, it
can converge to an appropriate value.

By definition, autonomic management of C is only of
benefit when there is no statically known fixed C that gives
optimum results. The observed benefits are thus closely
dependent on the chosen experimental conditions.

We discovered, through conducting the experiments, that
a low C fixed configuration was better than a high C fixed
configuration for the majority of the conditions tested. This
is why policy 1 shows better throughput than policy 2 in
figure 3. The autonomic policies perform better still, because
they are able, effectively, to select either policy 1 or 2 au-
tomatically. However, the improvement over policy 1 is not
large, because there were not many experiments for which
policy 2 was better. We therefore hypothesize that autonomic
management would exhibit greater benefit in a series of
experiments with a more even balance between conditions
favouring policy 1 and conditions favouring policy 2.

This ability to auto-select a value for C is a strong
feature of autonomic management. Another is its ability to
dynamically adjust C to accommodate dynamically chang-
ing circumstances. We would expect to see greater benefits
from autonomic management with experiments specifically
designed to require periodic change. These might include

conditions in which a network exhibits alternating phases of
predictable and random behaviour.
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