
Self-Adaptation Applied to Peer-Set Maintenance in Chord via a Generic Autonomic
Management Framework

Markus Tauber, Graham Kirby and Alan Dearle
School of Computer Science,
University of St Andrews, UK

Email: markus,graham,al@cs.st-andrews.ac.uk

Abstract—Self-adaptation can be achieved by autonomic
management of facets of a system’s constituent components.
This paper reports on a generic autonomic management frame-
work and on its application to a key-based routing protocol
as used in the peer-to-peer overlay Chord. The framework
implements generic components of the autonomic management
cycle. In the work reported here it was used to build a manager
which autonomically controls the maintenance scheduling of
the peer-set in individual Chord nodes, governed by some high-
level policies. This manager improved routing performance and
resource consumption in comparison to statically configured
Chord nodes in a deployed network which was exposed to
various membership churn and workload patterns.

Keywords-Self-adaptation; Autonomic Management Frame-
work; Key-Based Routing; P2P Overlays

I. INTRODUCTION

Self-adaptation is a category of behaviours exhibited by
so-called self-* systems which adapt their internal config-
uration parameters in response to a changing environment.
An approach to achieve self-* behaviour is autonomic man-
agement as defined by Kephart and Chess in [1].

Autonomic management principles are based on a feed-
back loop (the autonomic management cycle) comprising
four phases, namely:
• A monitoring phase, during which target-system-

specific events are recorded.
• An analysis phase, during which metrics are extracted

from the recorded events in order to represent the
current situation.

• A planning phase, during which decisions are made
about how to react to the current situation, driven by
policies.

• An execution phase, during which the planned actions
are carried out.

In this paper we introduce the Generic Autonomic Man-
agement Framework (GAMF) [2] which provides generic
components of this autonomic management cycle and allows
developers to focus on system-specific control logic.

We have used the GAMF to develop a manager that
dynamically adapts the frequency at which the peer-set in
Chord nodes [3] is maintained. As in any other P2P overlay
that supports the key-based routing (KBR) abstraction [4], an
individual Chord node maintains knowledge of the addresses

c© 2010 IEEE, Published at IEEE SASO 2013

of some subset of network nodes, its peer-set, this is similar
to the link-state in protocols like OSPF. The peer-set is
used for correct and efficient routing (referred to as lookup)
and also to repair the network topology in the presence of
membership churn. In the original Chord implementation [3]
peer-sets are updated by periodic maintenance operations.

In a P2P/KBR overlay with a statically configured main-
tenance interval, the following unsatisfactory situations can
be identified with respect to resource consumption and
performance. The first arises when the frequency with which
maintenance operations are executed is low and membership
churn is high. The peer-set becomes inaccurate, leading
to errors during the lookup process and to a reduction in
performance. In this situation it is desirable to increase the
maintenance frequency to increase peer-set accuracy. The
converse situation arises when the frequency is high and
churn is low (and/or no workload is executed). In this situ-
ation network resources are used unnecessarily, which may
also reduce performance, making it desirable to decrease the
frequency. We have hypothesised that such unsatisfactory
situations will be identified and corrected via the autonomic
management of the maintenance scheduling.

We have experimentally evaluated the effects of our auto-
nomic manager on lookup performance and network usage
in a deployed Chord network for various membership churn
and workload patterns and compared them with a static
configuration. In a majority of the experiments, significant
improvements due to autonomic management were observed
in the performance of routing operations and the quantity of
data transmitted between network members.

This paper contributes to the area of networking research
by presenting a self-* methodology which can be applied to
peer-set maintenance in KBR protocols explicitly and which
could be exploited for improving link-state maintenance.
Additionally the introduction of the GAMF represents a
contribution to autonomic management in its own right.

The paper is organised as follows: In section II the archi-
tecture of the GAMF and its usage is explained. Following
this we provide details of the autonomic manager and its
implementation in Chord in section III. Our experimental
evaluation is outlined in section IV. In section V related
work with respect to existing autonomic management frame-
works and to peer-set related optimisation of P2P overlays
is presented. This is followed by some concluding remarks
and an outline of future work in section VI.

II. FRAMEWORK ARCHITECTURE

The GAMF is a Java framework based on an autonomic
management cycle as illustrated in figure 1. The picture
shows the four phases of the autonomic management cycle
and corresponding GAMF-specific entities.

target system

flow of information

(policies)

planninganalysing

(metrics)

 shared
knowledge (effectors)

executing

(events)

monitoring

Figure 1: The autonomic management cycle [1] and corre-
sponding entities (events, metrics, policies, effectors).

The generic components of the autonomic management
cycle that are provided by the GAMF are:
• A monitoring facility, for triggering event generation
• A monitoring data store (shared knowledge database),

for:
– thread-safe provisioning of monitoring data
– basic filtering for event types and age

• A scheduling facility for triggering of the:
– extraction of metrics
– evaluation of policies

• A register for meta-data
Interfaces are provided for these generic components in

order that system-specific management components (system
adapters) may interact with the GAMF. The operations of
these system adapters correspond to individual management
cycle phases.

A set of system adapters for a particular target system may
be composed with the GAMF to yield an autonomic manager
for that system. In turn, the autonomic manager may be
composed with the target system to yield an autonomic
system.

The system adapters include event generators and effec-
tors, which allow interaction of the control mechanism with
the target system. They also include metric extractors and
policy evaluators, which provide the means for computing
a specific response, determined by policies, to an observed
situation, modelled by metrics. In more detail:
• Event generators provide the GAMF with time-stamped

information about specific events in the target system.
An event comprises an event type, a time-stamp and a
field for additional information, specified by the system
adapter developer. In order to allow unambiguous usage

of event types, the types of events generated by an in-
dividual event generator can be registered with GAMF
to prevent them being used by other event generators.

• Metric extractors are used to extract monitoring data
from the shared knowledge database in order to repre-
sent a specific situation, modelled by the metric. The
metric is specified by the system adapter developer with
a metric type, a time-stamp specifying the computation
time of the metric value, a field a numerical metric
value, and another for additional information.

• Policy evaluators evaluate the policy specified by the
system adapter programmer. A policy determines the
action to be carried out in response to the target sys-
tem’s current situation (represented by specific metric
values).

• Effectors carry out specific actions in the target system.
An effector may be triggered by a policy evaluator
in order to change a controlled system configuration
parameter and to make the system aware of the change.

The GAMF includes a flexible mechanism to filter for
specific events or metrics in the shared knowledge database,
allowing filtering by type and by the time of recording.

Metric extractions and policy evaluations may be:
• scheduled at regular intervals;
• triggered by the arrival of a specific event type; or
• triggered on an arbitrary schedule.

III. AUTONOMIC MANAGEMENT APPLIED TO CHORD

Our manager is intended to detect when maintenance
effort is being wasted and to decrease the current mainte-
nance rate accordingly. Conversely, it increases the rate in
situations when more vigorous maintenance is appropriate.

The potentially conflicting goals of reducing effort and
increasing performance are each individually managed by
a sub-policy. During the planning phase, each sub-policy
makes its own independent recommendation as to how the
current maintenance rate should be adjusted. The mean
value of these recommendations is then applied during the
execution phase.

The rationale for this structure is that although the sub-
policies will rarely agree, their recommendations will cancel
out in situations where little action is required, whereas in
more extreme situations one will outweigh the other, due to
the magnitude of the recommendations.

During each planning phase, each sub-policy considers
metric values derived from events received during the current
autonomic cycle. These events are based solely on locally
gathered data, thus no additional network traffic is generated
by the autonomic manager.

A. Monitoring

An event is generated whenever:
• a maintenance operation is executed without any effect

on the peer-set

• a failed attempt to access a peer-set element is made,
either during routing or during a maintenance operation

B. Analysis

Two metrics aggregate the events. The Wasted Mainte-
nance Count (WMC) and Error Count (EC) metrics count
the numbers of each event type during the current autonomic
cycle.
WMC models the amount of effort invested in mainte-

nance operations without effect. A high value suggests that
a lot of network traffic was unnecessary, since either little
churn occurred, or maintenance was executed frequently
enough to compensate for such changes. Conversely, a small
value implies that the network traffic due to maintenance op-
erations was effective in correcting errors, and may therefore
be regarded as justifiable.
EC models the accuracy of the peer-set as perceived by

user or maintenance activities attempting to use it. A high
value suggests that a large proportion of the peer-set is not
valid. Conversely, a low value suggests one of: a high degree
of accuracy in the peer-set due to frequent maintenance; low
churn; or low user demand due to a light workload.

C. Planning

Each of the sub-policies is driven by one of the metrics.
The sub-policy concerned with reducing effort considers
WMC, while the sub-policy concerned with improving
performance considers EC. The rationale for the former is
straightforward; for the latter, the point is that user-level
routing operations will retry when errors are encountered,
thus a high error rate leads directly to poorer performance.
As with any negative feedback approach, each sub-policy
recommends a change to the current maintenance rate, of
a magnitude related to the difference between the current
value of the relevant metric and some ideal value for that
metric. The further that the metric diverges from the ideal,
the more aggressive the response that is recommended. Since
both metrics count undesirable events, the ideal value for
both metrics is zero. Whenever WMC is non-zero the
sub-policy concerned with reducing effort recommends a
reduction in the maintenance rate, while whenever EC is
non-zero the sub-policy concerned with improving perfor-
mance recommends an increase in the maintenance rate. For
ease of integration with Chord, in practice each sub-policy
recommends a new maintenance interval, rather than a rate.
It calculates the proportion P by which the current interval
should be changed. The new interval is then calculated as:

new interval = current interval × (1± P) (1)

Where the sub-policy using WMC uses (1+P) and EC in
contrast uses (1−P) as it seeks to increase the maintenance
rate. In both cases, the proportion of change P lies between
zero and one, and is calculated as:

P = 1− 1
metric−ideal

k + 1
(2)

where metric denotes either WMC or EC as appropriate.
ideal is zero in both cases. k is a dampening factor for
each sub-policy, a positive constant that controls the rate
of change of P with respect to the difference between the
metric value and its ideal value. The higher the value of
k, the lower the resulting proportion of change, and hence
the slower the resulting response by the manager. Figure 2,
shows the proportion of change resulting from various EC
metric values, for a range of k values. The overall response

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20

P

EC metric values

k=2

k=4

k=8

k=16

k=32

Figure 2: Relationship between EC and P for various k

of the policy is to set the maintenance interval to the
mean of the values recommended by the sub-policies. In
addition, if any error has been detected during the current
cycle, a maintenance operation is invoked immediately. This
is intended to improve reaction to phase changes when
the error rate increases rapidly. Without this action, errors
occurring during a long maintenance interval (set due to a
currently low error rate) would not be rectified until the end
of the interval.1

D. Execution

Once the planning phase is complete, the execution phase
involves invoking a maintenance operation if necessary, and
setting the new value for the Chord node’s maintenance
interval.

E. Implementation

In Chord, peers are identified via a key drawn from a
circular key space. The peer set of each node is comprised of
the node’s successor(s), predecessor in key space and fingers
which point across the key space. We have used an in-house
Java implementation of the original Chord P2P overlay2

which maintains each of these independently. The manager

1Note that the length of a maintenance interval may be considerably
longer than the duration of an autonomic cycle.

2http://www-systems.cs.st-andrews.ac.uk/wiki/Software

described here controls all three of the maintenance opera-
tions separately. This was achieved by adding corresponding
setMaintenanceInterval() interfaces to be used as
effectors. An event generator was also added to Chord to
trigger the recording of the desired monitoring information
(see III-A). The above code executes in the same address
space as a Chord node, asynchronously from the operations
of an unmanaged node.

IV. EXPERIMENTAL EVALUATION

A. Overview

The effects of the autonomic manager on Chord’s perfor-
mance and network usage were measured in a sequence of
experiments. Each experiment combined a particular:

• workload (a temporal pattern of lookup requests),
• membership churn (a temporal pattern of nodes joining

and leaving the overlay), and
• scheduling policy.

For each experiment, a fixed number of Chord nodes
were deployed in an isolated test-bed of 16 machines. Each
node was deployed on a separate physical machine to avoid
competition for CPU and network resources on individual
machines. Each experiment was repeated three times.

B. Workloads

• A synthetic light-weight workload represented scenar-
ios in which few lookups were executed. A total of
10 lookups were issued, with 300 seconds of inactivity
between each one.

• A synthetic heavy-weight workload represented scenar-
ios in which lookups were executed at a high rate.
A total of 6,000 lookups were issued, with no delay
between each one.

• A synthetic variable-weight workload represented sce-
narios involving temporal variation in workload inten-
sity. A total of 1,000 lookups were issued, in batches
of 100 successive lookups followed by 300 seconds of
inactivity.

• A file system workload simulated a Chord workload
derived from a real world file system trace [5] applied to
a distributed file system built on Chord.3 The resulting
workload contained 15,000 lookups.

Whereas the synthetic workloads were all sequential, the
file system workload contained a mix of sequential and
parallel lookups, since the lookups required for some file
system operations (such as locating all replicas of a file)
can be performed in parallel.

3This research took place within the context of work using a P2P overlay
as a platform for a distributed file system.

C. Churn Patterns

Each churn pattern modeled the behaviour of a set of
nodes, in terms of a sequence of alternating on-line and off-
line phases for each node.

The first two churn patterns represented uniform be-
haviour among all nodes, one pattern with a low churn rate
and the other with a high churn rate. The durations of the
on-line and off-line phases were pseudo-randomly generated
from specified normal distributions.

Two other churn patterns represented networks exhibiting
both low and high churn rates. In one, the behaviour of any
given node exhibited either low or high churn consistently
throughout the experiment. The final churn pattern involved
a series of phases during which the whole network switched
repeatedly between low and high churn rates.

• In the low churn pattern nodes only exhibited a short
initial period (up to three minutes) of churn in which
nodes joined and formed the overlay. Once the overlay
was fully established no node left the overlay again.

• In the high churn pattern all nodes exhibited a sequence
of alternating on-line and off-line phases with durations
drawn from the following normal distributions:

– on-line: µ = 200s, σ = 40s
– off-line: µ = 100s, σ = 20s

• In the locally varying churn pattern 25% of the nodes
exhibited the low churn behaviour described above, and
75% of the nodes exhibited high churn behaviour.

• In the temporally varying churn pattern the entire
network exhibited alternating phases (each ≈ 1, 000s)
of low churn and high churn behaviour.

D. Scheduling Policies

The following scheduling policies were used:

• A null policy, policy 0, made no dynamic changes
to the maintenance interval. For fair comparison, this
was implemented using the same mechanisms as the
autonomic policies.

• A ‘relaxed’ autonomic policy, policy 1, used high
dampening factors (8 for WMC and 32 for EC),
yielding a relatively slow response to unsatisfactory
situations.

• An ‘aggressive’ autonomic policy, policy 2, used low
dampening factors (1 for both WMC and EC), yield-
ing a relatively rapid response to unsatisfactory situa-
tions.

In all cases the duration of the autonomic cycle was set at 2s,
thus the policies were evaluated every 2s. The initial default
maintenance interval was also set at 2s. For both policy 0
and policy 1, the fixed static interval and dampening factors
were derived from preliminary experiments in a subset of
the above conditions (see [6]).

E. Evaluation Criteria

The effectiveness of the various policies was evaluated in
terms of impact on Chord performance as perceived by the
user, and on network traffic generated by Chord. Network
usage was measured simply as the mean outgoing data rate
for all nodes.

The chosen performance metric was expected lookup time,
defined as the mean overall duration of lookup operations,
under the assumption that the caller retries repeatedly on
error until a result is obtained. A practical motivation for
this simplified approach was to combine the performance-
related measurements for successful and failed lookups as
listed below:
• lookup time tlookup, the mean duration of individual

successful lookup operations
• lookup error time terror, the mean duration of individ-

ual failed lookup operations
• lookup error rate perror, the probability for a lookup

operation to fail
The expected lookup time comprised the cost of the

eventual successful lookup plus the weighted sum of all
possible sequences of successive failures:

tlookup +

∞∑
i=1

i× terror × pierror (3)

The expected lookup time (ELT) was calculated for each
metric for each successive 5 minute time-window during the
course of each experiment. The network usage (NU) was
also extracted for every 5 minute interval (no post processing
was necessary). This allowed us to plot the metric values
over time and use them for summarising and quantifying
the effects. Alternative evaluation methods are described in
[6], [7].

F. Results

1) Overview: The experiments comprised all combina-
tions of the four workloads and four churn patterns. Table
I shows the number of experiments in which each policy
yielded the best results, for ELT , NU , and for both together.

ELT NU both
policy 0 (null) 2 1 0
policy 1 (relaxed) 8 3 0
policy 2 (aggressive) 6 12 5

Table I: Number of experiments ‘won’ by each policy

Table II provides an holistic view of the effects of auto-
nomic management. It shows the mean ELT and NU values
in managed systems normalised to an unmanaged system.
Thus every normalised value less than 1 represents a benefit
of the specific autonomic management policy with respect
to the unmanaged system.

policy 1 policy 2
workload churn ELT NU ELT NU

light-
weight

low 0.725 0.09 0.705 0.028
high 0.814 0.548 0.817 0.353
local 0.835 0.454 1.207 0.438
temporal 0.807 0.293 0.979 0.178

heavy-
weight

low 0.727 0.314 0.698 0.23
high 0.605 1.333 0.693 0.983
local 0.085 1.2674 0.183 1.082
temporal 0.562 0.541 0.672 0.4

variable

low 0.714 0.111 0.7 0.054
high 0.362 1.202 0.364 0.781
local 3.239 0.416 2.954 0.421
temporal 1.559 0.258 0.974 0.245

file-
system

low 0.804 0.341 0.787 0.293
high 5.142 0.47 1.089 0.523
local 0.6 0.453 0.592 0.882
temporal 0.862 0.595 0.932 0.409

Table II: Normalized performance and network usage

Bold and underlined values in table II represent results
which were not statistically significantly different from the
baseline (policy 0), according to a visual approximation test
for significance under the consideration of a 90% confidence
interval of the mean (ciµ). The comparison of expected
lookup times abstracts over the variation of the underlying
raw data (lookup time, lookup error time and lookup error
rate) for simplicity. Samples of the raw data as provided in
[6] for each measurement show that statistically significant
differences can be identified in the majority of the raw data
sets used to derive the expected lookup time. As an example
figure 3 shows the ciµ (with 90% confidence) for lookup
times in experiments with heavy weight workload and high
churn comprising data sets of an average size of ≈ 15, 000.

 350

 400

 450

 500

 550

 600

 650

0 1 2

l
o
o
k
u
p

t
i
m
e
[
m
s
]

policy

Figure 3: Lookup Times (raw data)

4In contrast to the visual approximation, a t-test results in a significant
difference in this case.

0

20

40

60

80

 0 10 20 30 40 50 60

m
a
i
n
t
e
n
a
n
c
e
-
i
n
t
e
r
v
a
l

[
s
]

elapsed time [min]

policy 0
policy 1
policy 2

(a) Low churn

0

20

40

60

80

 0 10 20 30 40 50 60

m
a
i
n
t
e
n
a
n
c
e
-
i
n
t
e
r
v
a
l

[
s
]

elapsed time [min]

policy 0
policy 1
policy 2

(b) High churn

0

20

40

60

80

 0 10 20 30 40 50 60

m
a
i
n
t
e
n
a
n
c
e
-
i
n
t
e
r
v
a
l

[
s
]

elapsed time [min]

policy 0 (LCN)
policy 0 (HCN)
policy 1 (LCN)
policy 1 (HCN)
policy 2 (LCN)
policy 2 (HCN)

(c) Locally varying churn

0

20

40

60

80

 0 10 20 30 40 50 60

m
a
i
n
t
e
n
a
n
c
e
-
i
n
t
e
r
v
a
l

[
s
]

elapsed time [min]

policy 0
policy 1
policy 2

(d) Temporally varying churn

Figure 4: Interval progressions for heavy-weight workload and various churn patterns

2) Autonomic Manager Behaviour: To illustrate the pol-
icy actions resulting in the effects reported in table II, we
plot the progression of maintenance intervals over time (we
omit error bars for readability). Figures 4a-4d show the
progressions of the maintenance intervals over the courses
of the experiments, for the four churn patterns. Each point
plotted is the mean of the corresponding figures for three
repeated runs. In the experiment with locally varying churn,
the progressions are plotted separately for low-churn nodes
(LCN) and high-churn nodes (HCN).

Figure 4a shows that for low churn, the autonomic policies
detected an unsatisfactory situation with respect to network
usage, and reacted by steadily increasing the maintenance
interval. This decreased the amount of work each node spent
(unnecessarily) maintaining its peer-set, and thus reduced
the amount of data sent to the network in comparison with
unmanaged nodes. Additionally, a reduction in the work
spent on maintenance operations left more computational
capacity for dealing with lookup operations. This reduced
the expected lookup time. As expected, policy 2 increased
the interval more aggressively than policy 1.

Figure 4b shows that for high churn, the autonomic
policies held the intervals fairly constant, though at higher
values than for unmanaged nodes. Referring to table II, this
yielded roughly the same network usage as for unmanaged
nodes, and a significant improvement in expected lookup
time. This improvement in performance may appear counter-
intuitive, given the reduction in overall maintenance effort,
particularly since examination of the experimental logs
shows that error rates were significantly lower for the auto-
nomic policies than for unmanaged nodes. The explanation
is that each value plotted is derived by averaging individual
maintenance interval values over the entire network, and
over a five minute aggregation time window. This masks
the fact that there was considerable variation in controlled
interval values within each time window. Whenever the
manager of a given node detected errors in its peer-set, it
immediately decreased the maintenance interval, giving a
period of high maintenance activity. Once the errors were
corrected, the manager increased the interval again until the
next error. Thus errors were corrected more rapidly than in
an unmanaged system, despite the overall average interval

being higher. Again, policy 2 reacted more aggressively than
policy 1, and kept the maintenance interval at higher levels.

Fig. 4c shows the resulting intervals for locally varying
churn, where some nodes (75%) exhibited high churn, and
the rest, low churn. There are two features of interest: the
apparent phase change after about 40 minutes, and the fact
that the autonomic managers behaved markedly differently
on the low churn and high churn nodes.

We have no simple explanation for the phase change,
other than to hypothesize that the particular churn patterns in
use caused some threshold in the error rate to be exceeded,
triggering rapid decreases in the intervals.

The differences in behaviour between low and high churn
nodes appear anomalous, since all nodes experience roughly
the same environment in terms of the aggregate behaviour of
their peers (assuming that the low churn nodes are uniformly
distributed throughout the network). The explanation is that
a node’s maintenance interval was reset to the default value
every time it restarted, in order to simulate the arrival of
new nodes in a network. Thus each manager on a high churn
node did react to the environment in the same way as the low
churn nodes, by steadily increasing the maintenance interval,
but since the interval was regularly reset, the average value
was held fairly constant and close to the default value.

Figure 4d shows the autonomic policy behaviour for tem-
porally varying churn, in which the entire network alternated
between low and high churn, in phases lasting about 17
minutes. During the initial low churn phase the managers
responded as expected, in the same way as in the low churn
experiment. When the network moved into high churn they
reacted by decreasing the maintenance intervals. The more
aggressive behaviour of policy 2 can be seen clearly. Table
II shows that this gave slightly better results for network
usage than policy 1, but slightly worse for expected lookup
time. Both policies obtained significantly better results than
the unmanaged network.

V. RELATED WORK

A. Autonomic Management Frameworks

The motivation for developing the GAMF was that exist-
ing tools such as vGrid [8], AutoMate [9], k-component [10],
IBM autonomic computing toolkit [11], [12] and Accord
[13] were considered too complex and heavy-weight for the
context in which this work was carried out.

AutoMate and Accord are expected to have a significant
impact on the target system’s runtime performance as they
contain P2P overlay networks for discovering components
in a distributed system, and mechanisms to extract policies
from XML formatted configuration files.

The IBM autonomic computing toolkit allows the appli-
cation of autonomic management using a wide variety of
built-in interfaces which are however limited in their scope.
These interfaces require the manager to operate in a different
address space to the target system. This and the complex

machinery which comes with this tool impose a significant
load on the target system.

For similar reasons, the k-component architecture was
not considered in this work. It provides a C++ library
which defines an Adaptation Contract Description Language
(ACDL) to specify how a controlled component is adapted
by some control mechanism. A Collaborative Reinforce-
ment Learning methodology is used to gather information
from remote components via CORBA. Component meta-
information, used for the ACDL, is stored in separate files
in XML format. This meta-information is generated via the
use of addtional tools.

The advantage of the GAMF over all of the above is that
it i) has a simple interface, ii) is thus very flexible, iii) and
is capable of running in the same address space as the target
system.

B. Key-Based Routing Optimisations

The most closely related work is based on Pastry [14]
and describes the optimisation of resource consumption for
a given acceptable message loss rate. This is a form of
performance metric. Each node dynamically estimates the
overall node failure rate and the size of the overlay, and uses
an analytical model to deduce an appropriate maintenance
rate that should yield the target loss rate. Our approach is
simpler in that it does not require estimation of any global
properties, instead applying simple heuristics based on local
observations.

In contrast to our approach, [14] does not take user
workload into account. Furthermore, it imposes a lower
bound on resource consumption, since the maintenance rate
is not further reduced once the acceptable loss rate is
achieved, even in situations where resource consumption
could be lowered while still meeting the target loss rate.

Binzenhöfer and Leibnitz [15] describe how churn may
be estimated in Chord networks in order to set mainte-
nance rates appropriately. They do not however perform any
adaptation. Churn is estimated by monitoring changes in
a node’s peer-set. The focus is on limiting the probability
of network partition before the next maintenance operation.
This approach does not take user workload into account; the
churn estimator receives only information gathered during
maintenance operations. Consequently, the algorithm may
be slow to react to a sudden increase in churn occurring
during a low-churn period with low maintenance rates.

Chord2 [16] aims to reduce maintenance costs by intro-
ducing a two-level structure, with a smaller ring of high
performance super-peers used to manage finger tables. There
is no dynamic control of maintenance intervals.

VI. CONCLUSIONS

We have demonstrated that autonomic management of
maintenance scheduling in Chord can achieve significant
improvement in performance and resource consumption.

Under changing conditions, autonomic management can
adapt scheduling to suit prevailing conditions. Under static
conditions, it can converge to a better scheduling than is
likely to be configured for an unmanaged system.

There are several avenues for possible further develop-
ment of our management approach. Some involve refine-
ments to Chord itself (for instance a fall-back mechanism
to compensate for accesses to faulty finger table entries),
while others involve different approaches to autonomic man-
agement (for instance cascading managers which adapt the
dampening factor autonomically). Our autonomic manage-
ment approach could also be applied straightforwardly to
other P2P overlay networks that perform periodic mainte-
nance operations, at statically configured intervals, such as
Tapestry [17], CAN [18] and Pastry [19].

This approach could also be exploited to build managers
for adapting peer-set or link-state maintenance scheduling in
network protocols outwith the P2P research area.

The GAMF has also been used to control the degree of
concurrency in data retrieval operations in a distributed stor-
age system [6], supporting the claim for GAMF’s genericity
and flexibility. The sub-policy based approach to autonomic
management as reported here is, together with the GAMF,
applicable to a wide range of topics and we hope that this
motivates its usage outwith the scope of this work.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing,” IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[2] M. Tauber, “A Generic Autonomic Management Framework
(GAMF),” February 2010. [Online]. Available: http://www-
systems.cs.st-andrews.ac.uk/gamf

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A Scal-
able Peer-to-peer Lookup Protocol for Internet Applications,”
in ACM SIGCOMM 2001, August 2001, pp. 149–160.

[4] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica, “Towards a Common API for Structured Peer-to-
Peer Overlays,” in 2nd International Workshop on Peer-to-
Peer Systems (IPTPS ’03), 2003.

[5] D. Roselli, “Characteristics of File System Workloads,” Uni-
versity of California at Berkeley, Tech. Rep. CSD-98-1029,
1998. [Online]. Available: citeseer.ist.psu.edu/736324.html

[6] M. Tauber, “Autonomic Management in a Distributed Storage
System,” Ph.D. dissertation, University of St Andrews, School
of Computer Science, 2010, arXiv:1007.0328v1.

[7] M. Tauber, G. Kirby, and A. Dearle, “Autonomic Man-
agement of Maintenance Scheduling in Chord,” University
of St Andrews, School of Computer Science, Tech. Rep.
arXiv:1006.1578v1, 2010.

[8] B. Khargharia, S. Hariri, M. Parshar, L. Ntaimo, and B. Kim,
“vGrid: A Framework For Building Autonomic Applica-
tions,” in Proceedings of the International Workshop on
Challenges of Large Applications in Distributed Enviroments
(CLADE’03), 2003.

[9] M. Agarwal, V. Vhat, H. Liu, V. Matossian, V. Putty,
C. Schmidt, G. Zhang, L. Zhen, and M. Parashar, “Automate:
Enabling autonomic applications on the grid,” Department
of Electrical and Computer Engineering, Rutgers University,
Seattle, WA, CAIP TR-269, 2003.

[10] J. Dowling and V. Cahill, “The K-Component Architecture
Meta-Model for Self-Adaptive Software,” in Proceedings
of 3rd International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection2001).
Springer-Verlag, 2001, pp. 81–88.

[11] N. Chase, Understand the Autonomic Management
Engine, IBM, June 2004. [Online]. Available:
https://www6.software.ibm.com/developerworks/education/ac-
ame/

[12] B. Melcher and B. Mitchell, “Towards an Autonomic Frame-
work: Self-Configuring Network Services and Developing
Autonomic Applications,” Intel Techology Journal, vol. 8,
no. 4, pp. 279–290, November 2004.

[13] H. Liu and M. Parashar, “A component based programming
framework for autonomic applications,” in the International
Conference on Autonomic Computing, New York, NY, USA,
2004.

[14] R. Mahajan, M. Castro, and A. I. T. Rowstron, “Controlling
the Cost of Reliability in Peer-to-peer Overlays,” in 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS 2003).
Springer, 2003, pp. 21–32.

[15] A. Binzenhöfer and K. Leibnitz, “Estimating Churn in Struc-
tured P2P Networks,” University of Würzburg, Tech. Rep.
404, 2007.

[16] J. Yuh-Jzer and W. Jiaw-Chang, “Chord2: A Two-Layer
Chord for Reducing Maintenance Overhead via Heterogene-
ity,” Computer Networks, vol. 51, no. 3, pp. 712–731, 2007.

[17] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay
for Service Deployment,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 1, January 2004.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A Scalable Content Addressable Network,” in
SIGCOMM ’01: Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications. New York, NY, USA: ACM,
2001, pp. 161–172.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
ystems,” in IFIP/ACM International Conference on Dis-
tributed Systems Platforms (Middleware), Heidelberg, Ger-
many, November 2001, pp. 329–350.

