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Abstract—We demonstrate that in a future converged network
scenario, it may be beneficial to allow selection of the used
IEEE 802.11 variant based on application requirements. We
have evaluated a performance envelope derived from testbed
experiments for individual IEEE 802.11 variants and compare
these with the traffic patterns from a large campus network. To
demonstrate our approach, we analyse traces from the campus
network from the University of Twente, comprising ∼5000
users. From our comparison we find that specific IEEE 802.11
variants (e.g. 802.11g or 802.11n) may be better suited to specific
applications, such as video streaming, rather than using a single
WLAN standard for all traffic.

Wireless networks (WLANs) are increasingly used in home

and office environments, especially in a Next Generation

Converged Networking context, in which we aim to move

services into IP networks – which may rely heavily on WLAN

for the access network. However, applications, used in such a

context, are not often designed or built for use specifically over

WLAN. There is great value in determining the performance

of such applications on real networks from studies of network

traces [1]. In our discussion, we use the term group of appli-

cations (GoA) to refer to several use cases of application flows

with similar application domains. For example, the following

use-cases for a VoIP application would be classed in this paper

as the GoA for real-time audio: one-to-one chats, many-to-

many conference, one-to-many lecture.

In our recent work [2], [3], we have found that traffic charac-

teristics for individual GoAs, such as data rate and packet size,

have a great effect on the exhibited performance in WLAN op-

eration for the different 802.11 variants. We find that the upper

and lower bounds of GoA-neutral performance envelopes can

be evaluated, empirically, across a range of flow constructions

by controlled combinations of packet size and offered load.

Depending on their requirements, GoA traffic profiles will lie

somewhere within this envelope. For instance, to compensate

for loss, real-time applications often use small packets and

low data rates (with UDP). This may in turn be dependent

on the use of a specific video or audio codec. Streamed

multimedia flows (non-real-time), however, can compensate

for loss by use of playout buffering and retransmissions, and

so can operate with higher data rates and packet sizes even if

there is some loss (with UDP or TCP). Bulk data transfers (e.g.

file transfers) often just use as much of the available capacity

as possible (using TCP, or a combination of TCP and UDP

as in BitTorrent). Users currently may roam between WLAN

cells without any control over the used WLAN variant on a

per-client basis, and certainly have no control of use of WLAN

on a per-application basis. Additionally, current hardware does

not support such per-application configuration. We find that

the WLAN variant(s) used in a cell, however, may impact the

performance of flows within a specific GoA. We show that:

• different applications on the same client system may

be better served by different WLAN variants matched

to the performance requirements of different groups of

applications (GoA), and so future WLAN systems may

find benefit from using different WLAN variants on a

per-application basis.

• our analyses of the single flow traffic profile on a testbed

is useful in evaluating aggregate traffic patterns, for a

group of applications (GoA), from a large network.

To investigate this behaviour for traffic in different WLAN

environments, in this paper, we:

• determine performance envelopes for a wide range of

traffic flows in IEEE 802.11g & 802.11n in a testbed.

• use the testbed observations to help analyse the distribu-

tion of traffic profiles from a large WLAN traffic trace,

in the context terms of group of applications (GoA) .

We analyse NetFlow traces from the University of Twente

comprising ∼5000 WLAN users of IEEE 802.11n/g radio

cells. We empirically evaluate a range of GoA characteristics.

We then compare these to a performance envelope, based

on the operation of a single client, generated on an IEEE

802.11n/g testbed. While we have constrained ourselves to

802.11g and 802.11n for practical purposes (e.g. the network

configuration of the University of Twente deployment), our

methodology for generating the performance envelopes has

been applied to other IEEE 802.11 variants in our previous

work [2], [3]. We consider GoAs from real-time audio to bulk

data transfers.

Our work is an initial comparison of use case (GoA)

specific traffic patterns, extracted from a campus network,

with performance envelopes generated from a WLAN testbed.

The traffic patterns may vary with applications and protocols

evolving, we however see a trend that multi media GoAs prefer

network conditions as provided by legacy standards.

The remainder of this paper is as follows: In Section I we

overview some of the related research achievements. After

that in Section II we explain our methodology. Following,

we show our experimental findings and the extracted traffic

characteristics in Section III and provide concluding remarks

and an outline to future work in Section IV.c© 2013 IEEE, Published at IEEE ICNC 2013



I. RELATED WORK

Overall, no existing studies examines the performance of

specific IEEE 802.11 variants in the context of their suitability

for application-specific flows.

Henderson et. al. [4] provide a rigorous analysis of trends

of the usage in the 802.11b wireless campus network of the

Dartmouth College in the US. Overall they define and consider

the following categories of applications: Bulk, Database, In-

teractive (e.g. IRC, AIM), Mail, P2P (e.g. Gnutella), Services

(e.g. X11, DNS), filesystem (e.g. SMB/CIFS), Streaming (e.g.

RealAudio), VoiP (e.g. Cisco CallManager), WWW, Other (all

named ports that do not fit into the other categories), Unknown

(all unnamed and unidentified ports). Similarly, we also have

groups of applications (GoA) which we analyse.

Fiehe et. al. [5] examine performance in 802.11n exper-

imentally, considering signal strength attenuations. They do

not evaluate practical upper and lower bounds of operation

as determined by the flow characteristics. A similar discus-

sion applies to Shrivastava et al [6], in which the authors

experimentally evaluate the impact on performance of 802.11n

features like MIMO, channel bonding and frame aggregation.

They also consider a scenario in which the presence of a neigh-

bouring 802.11g cell causes interference, in a specific office

environment and configuration. In [7]–[9] the authors report

on empirical measurements of performance in IEEE 802.11

networks. The analyses focuses on coverage, RSSI and in-

terference. The authors provide measurements of application-

specific performance using ping to determine loss, and file

transfers to determine throughput, but they do not consider

upper and lower bounds of what is practically achievable.

Suong et. al. [10] use model based analyses to conclude that

many small packets will result in an increased probability of

collision (as we do).

As part of our study we also dealt with application/traffic

classification – a commonly used technique, evolving over

time from packet-based [11], [12] to flow-based. So, a number

of studies that identify application types and assign them into

specific categories/classes are popular for network manage-

ment practises and academic studies [13].

Karagiannis et. al. proposed a method that is based on

the transport layer characteristics and therefore does not rely

on user payload inspection [14]. This method makes use of

two heuristics: one examines the source-destination IP pairs

that use both TCP and UDP to transfer data, while the

second monitors connection patterns of transport endpoints.

The growing applicability of clustering and machine learning

methodologies pushed the research community to consider

their application for the purposes of traffic classification [15],

[16] as well as intrusion and anomaly detections [17], [18].

II. METRICS AND APPROACH

A. Overview

We compare testbed results for a performance envelope,

with analyses of NetFlow data from a campus network. We use

the same testbed and harness as already described in [2], [3]

for our WLAN performance measurements. We extract traffic

profiles from NetFlow traces comprising a user base of ∼5000

users of 802.11n/g wireless networks operating at 2.4GHz at

the University of Twente. The NetFlow data is processed to

extract specific traffic profiles (specified by data rate of the

offered load and packet size). The range of the values for data

rate and packet size are manually evaluated for the individual

groups of applications (GoA).

For our testbed, we assume that most users do not have

the expertise to fine-tune their equipment and that most

deployed systems are used in ‘out-of-the-box’ configurations

(no performance tuning). Specifically, our constraints are:

• Standard WLAN configuration. We used only standard,

un-tuned WLAN setups. While many WLAN NIC drivers

and access points (AP) do permit various controls of the

hardware, this is not easily accessible or comprehensible

for modification by most users.

• Packet flow behaviour. To measure application-specific

performance (throughput and loss) we use a range of UDP

flows specified by packet rate and packet size to evaluate

the upper and lower performance bounds that define our

performance envelope.

B. Traffic Profile extraction from NetFlow Traces

We extract traffic profiles of both real-time and streamed

audio and video applications as well as bulk data transfers

from NetFlow formatted traces from the University of Twente.

1) NetFlow: NetFlow services provide network adminis-

trators with access to IP flow information from their data

networks. Network elements (routers and switches) gather flow

data and export it to collectors. The collected data provides

fine-grained metering for highly flexible and detailed resource

usage accounting. Generally, a flow is a set of packets that

share common properties. In [19], a flow is defined as a

unidirectional stream of packets between a given source and

destination, both specified by a network-layer IP address and a

transport-layer source and destination port numbers. As such,

a NetFlow v5 flow is identified by a combination of seven

connection specific fields (Source IP address & Port number;

Destination IP address & Port number; IP protocol type – e.g.

TCP or UDP; Type of service byte; Input logical interface)

In addition, a flow contains other accounting fields which

may differ slightly depending on the NetFlow version record

format. For instance, suppose that an SSH connection is

established from a client on host 12.14.2.3 port 1234 to a

server on host 13.18.5.6 port 22, and that the traffic passes

through a router that has NetFlow processing enabled. The

initial packet from the client to the server causes the router

to create a flow entry for {TCP, 12.14.2.3, 1234,

13.18.5.6, 22}. The response from the server to the

client causes the router to create a related flow {TCP,
13.18.5.6, 22, 12.14.2.3, 1234}. Data (packet

sizes, number of packets per second, etc.) from subsequent

traffic will be aggregated in these two flow records until one

of the terminating conditions for the flow are met.



2) Trace Description: The NetFlow data is captured at the

central router of the University of Twente in the Netherlands.

This data set represents daily Internet audience of ∼5000

users. Most of these users have static IP addresses, while

the others have them dynamically assigned. A certain, known,

fraction of traffic originates in Wireless LANs of the university

facilities, which operates with 802.11n/g at 2.4 GHz. For our

work we used traces of weeks 35-36 in 2010 and weeks 8-9

in 2011. We compared the statistics for this randomly selected

time period with other weeks and did not find significant

differences. The longest period for which the selected set of

flow records can be considered representative is seven weeks.

3) Traffic Profile Extraction: Since the identified GoAs

represent a general pool of applications and protocols, we

have used a simple approach for their differentiation. We

define five GoAs: real-time audio & video, streamed i.e. non-

real-time audio & video, and bulk data transfers. In order

to assign a NetFlow record into one of these use cases we

first carried out a manual investigation (using tools such as

tcpdump and nfdump to identify traffic parameters (packet

size and data rate) for each class. For instance, in case of real-

time video, we initialised Skype and Gtalk Video sessions

with different endpoints and monitored the statistics of the

resulting packets and flow records. This was used to identify

upper and lower bounds of expected packet sizes (bytes) and

data rates (Mbps) for the real-time video use case. A similar

procedure was carried out for the other four GoAs. Real-time

audio streams were based on the same applications as above,

and were tested with multiple endpoints. Streaming video

applications included: YouTube streams of different quality

(360p, 480p and 720p); Vimeo streams with ‘HD-off’ and

‘HD-on’, as well as streams from Dailymotion. For streamed

audio we considered a number of on–line music players, like

Last.fm and Grooveshark, as well as several on-line radio

stations and browser radio plugins. To establish the parameters

for bulk GoA, services like Megaupload and Dropbox in

combination with P2P and torrent clients were used to measure

characteristics of downloads of files of various sizes.

Based on these observations, we formed a set of five filter

rules that were fed into nfdump along with the traffic trace.

The produced output consisted of five NetFlow traces that

included records associated with each of the GoAs.

Next, we used a combination of nfdump and bash scripts

in order to extract the statistics for each traffic class, producing

distributions of packet size values and data rate for each

individual traffic class.

C. Testbed

We have experimentally measured performance in our

WLAN testbed. We generated packet flows of offered loads

with various packets sizes, and measured end-to-end perfor-

mance during the packet transmission. Our testbed (Figure 1)

consisted of a single client host, a host running a wireless

access-point (AP) and experimental control units for moni-

toring the WLAN environment, providing storage for mea-

surement data, ntp services and system configuration. The

WLAN hosts were setup in a teaching lab in the University of

St. Andrews with a distance of ∼24±0.5 m between the 2 dBi

antennas. We have conducted our measurements using 11g and

11n at 2.4GHz to present values representative of those found

in the traces.

Fig. 1. Schematic of test-bed showing physical connectivity. The testbed was
configured separately for 802.11g and 802.11n (20 MHz – default - channel
width), both with transmission (TX) powers of 17 dBm. The experiment
controller uses Ethernet for control messages and shared file-system access.
The distance between the client and access point antennas is 24±0.5 m. Data
packets generated by iperf were transferred across the WLAN link.

We tested 802.11n and 802.11g at 17 dBm (50 mW, a high

but typical indoor RF power – chosen to avoid measurements

being biased by poor RF conditions, and representing a best-

case scenario), and with a 20 MHz (default) channel width

for 11n. This means that all our experimental workloads

in Table I are executed 2 times, once with each of these

combinations. Our WLAN card uses the popular Atheros

chipset. All machines used Ubuntu 10.04 a minimal server

distribution (no desktop service daemons or GUI overhead),

with the default kernel 2.6.32-24-generic-pae, and updated

WLAN modules (compat-wireless-2011-05-02), which will

soon be part of the standard distribution. We have used hostapd

(v. 0.6.9) as AP and to avoid overhead and bias due to link

encryption and security mechanisms we disabled encryption

and security. To prevent experiments being disturbed by other

users, our WLAN cell did not broadcast the SSID in the

beacon interval.

D. Experiments

Packet generation and performance measurement for UDP

traffic was conducted using iperf for which the AP was

used as the server. A wrapper script at the client executed

iperf and extracted throughput and loss for individual UDP

flows using iperf server reports. The specific packet sizes

and bit rates of the UDP workload are given in Table I, for

which we choose a range into which most applications fall. We

use UDP as it is popular for Voice and Video over IP (VoIP

and ViIP) applications and because it allows better control of

application-specific offered load bit rates compared to TCP,

which is modulated by its congestion control behaviour.

TABLE I
UDP WORKLOAD.

Packet size 64; 1460 bytes

Bit rate of the 10; 50; 100; 500 Kbps
offered load 1; 5; 10; 15; 20; 25; 30 Mbps

Combination of packet size and bit-rate produces 22 tuples; 5 measurements
for each combination; 11g and 11n with 20MHz (default) channel width; each
flow had a duration of 120 seconds, giving over 7 hours of measurements.
We choose to uniformly test up to a max. of 30Mbps for offered load for
comparison reasons – this is just above the operational limit of 802.11g.



III. RESULTS AND DISCUSSION

We present the characterisation of GoAs from the traffic

profiles extracted from our traces by showing the distribution

of packet sizes and data rate for each individual use case

i.e. for each individual GoA. We compare that with the

upper and lower bounds of performance, that means, with

our performance envelope, measured in our WLAN testbed

operating separately with IEEE 802.11n and IEEE 802.11g. In

addition to throughput, we also show measurements for loss, as

that is often ignored in such investigations. We can summarise

that our analyses allows the identification of GoAs in which

the degree of variation in the extracted flow characteristics is

of such magnitude that users will exhibit, performance changes

when roaming between WLAN cells of different standards.

A. Use Case Specific Trace Analysis

Packet size distribution is, for each GoA, less skewed than

the corresponding data rate distribution. The latter’s skewness

increases with the average packet size of the specific GoA. In

Table II we summarise packet size and data rate distribution

by presenting the mean and standard deviation for traffic for

a specific GoA. Because of the skewness of the data rate

distributions, we also show the mode value for the data rate

distributions. We see distinct traffic profiles for each GoA.

To illustrate this in more detail we show the cumulative

frequency distributions for all use case specific traffic profiles

and flow parameters in Figures 4–8. For our analysis we

have used the trace as described in section II-B2, i.e. the

data is representative of consecutive seven weeks in our trace.

Distributions of traffic profiles for each GoA are skewed and

TABLE II
THROUGHPUT AND PACKET SIZE DISTRIBUTION CHARACTERISTICS.

packet size [byte] data rate [Kbps]

GoA (use case) avg std mode avg std

real-time audio 147 42 43 70 26

real-time video 570 96 528 588 186

streamed audio 854 72 86 171 107

streamed video 1079 159 777 1562 1118

bulk data transfer 1434 42 219 688 3429

Average data rate and packet size of use cases and classes of applications,
captured during one week in 2011, comprising about 1000 unique MAC
addresses – please see Section II-B2 for the trace description.

have a coefficient varying from ≈ 0.4 to ≈ 3 (using Pearson’s

skewness definition: 3.(mean−mode)/std). This is expected,

since each GoA is biased towards a certain type of flow type.

We observe that the bulk class exhibits a large value for the

standard deviation for a given data rate, which is exhibited as

a heavy-tail in the CFDs.

B. Flow Characteristic Dependent Performance Envelopes

Figures 2 and 3 show the measured average throughput

and loss in a 802.11g and 802.11n WLANs operating at

2.4GHz, with 20MHz channel width. This shows that at a

given data rate of the offered load (i.e. the application’s data

rate) throughput is determined by the packet size. This is a

result of the MAC layer overhead (see [2] for more details).

Additionally we also see that loss increases for smaller packets

in 11n. In general we can say – based on these measurements

and our past experience – that a throughput gain comes at

the cost of increased loss. We illustrate that by including loss

plots for 802.11g and 11n in Figure 2 and 3. They represent

the upper and lower bounds of throughput and loss in the

individual WLAN standards. Performance of real applications

will be somewhere within these performance envelopes.
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Fig. 2. IEEE 802.11g with 17dBm TX power. Each point represents 5 flows
with the same data rate, packet size and of 120 sec duration.
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Fig. 3. IEEE 802.11n with 20MHz chan. and 17dBm TX power. Each point
represents 5 flows with the same data rate, packet size and of 120 sec duration.

C. Comparison of Performance Envelopes and Trace Analysis

When putting the performance envelopes in Figure 2 and 3

in context with our extracted traffic profiles (Table II) we see

that streamed video traffic operates (due to the high standard

deviation of packet sizes) in a mode where loss can more likely

occur due to the applications flow behaviour if being used in

11n but not with 11g. Even though bulk data transfer traffic

can have a high data rate it may not suffer from too much

loss as the packet size does not vary as much as it does for

streamed video. In our traffic analysis we see that bulk data

transfer exhibits data rates below 11g’s operational limit which

does not result in a difference in performance in our envelope

of different WLAN flavours. However, in e.g. Intranet use

cases (not isolated in our analyses) local caches may result

in higher data rates and lower end-to-end path loss, which

will, potentially, result in superior performance in 11n than in

11g. Real time applications, however operate with such flow

characteristics that no performance difference due to tested

standards is to be expected when e.g. roaming between 11g

and 11n. That is, from our performance envelopes, we see that

at loads below ∼1 Mbps, there is little difference in throughput

and loss across 11n and 11g, but above ∼1 Mbps differences

start to appear, and they will impact different GoAs differently.
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Fig. 4. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for real-time audio.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 250 500 750 1000 1500

packet size [bytes]

 0

 0.2

 0.4

 0.6

 0.8

 1

10K 100K 1M 10M

data rate [bits/s]

Fig. 5. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for real-time video.
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Fig. 6. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for streamed audio.
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Fig. 7. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for streamed video.
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Fig. 8. Cumulative Frequency Distributions of Traffic Flow Characteristics extracted for bulk data traffic.



D. Practical implications of our results

We see from our measurements that with higher offered

load and larger packet sizes (Figure 2 and 3), although higher

throughput is achieved, there is comparatively higher loss for

802.11n, but not for 802.11g. Such loss is not suitable for real-

time audio and video. Indeed, our characterisation of the traffic

(Figures 4–8) show that real-time audio has smaller packets

sizes – less than 260 bytes – and lower data rates – less than

∼160Kbps. For real-time audio, the relevant figures are packet

sizes of less than 700 bytes and data rates of up to ∼1.5Mbps

with the 90th-percentile at ∼880Kbps. For streamed audio and

video, we see higher data rates and higher packet sizes being

used, as these applications can tolerate loss. In 11g, we see

from our testbed that loss is not such a factor at equivalent

data rates of 11n (Figure 2 and 3). So, it is possible that

a mixed 802.11 environment might exist in the future. The

lower bit-rate, real-time applications would use 802.11g to

exploit low loss, and the higher bit-rate streamed applications

would use 802.11n to use the higher data rates. However,

the client systems would need to support simultaneous use

of 11g and 11n, something that is not widely supported today

(client interfaces operate in either 11g or 11n, by access point

interfaces can use both). Another factor would be if the loss

characteristics of 11n could be improved at higher data rates.

IV. CONCLUSIONS AND FUTURE WORK

From our previous work on WLAN performance [2], [3], we

find that application specific data rates and packet sizes impact

traffic. Here, we have characterised traffic from a campus

wireless network by extracting traffic profiles of five groups of

applications (GoA): real time audio, real-time video, streamed

audio, streamed video, and bulk data transfer applications. The

flow characteristics of the GoA profiles have then been put into

context by examining performance measurements conducted in

our local testbed. We have established performance envelopes

which show the upper and lower bounds of performance in

11g and 11n. (restricted to 11g and 11n to match the analysed

traces from the campus network). We see that specific GoA

profiles have a greater probability of suffering from loss in

specific WLAN environments. Especially multimedia GoAs

seem to benefit from being used with legacy 802.11 variants.

Comparing the distributions of traffic characteristics of the

GoAs to our performance envelope for 11g and 11n, we find

that real-time traffic may be better suited to 11g (lower loss),

not benefiting from the higher rates of 11n (with higher loss).

Non-real-time and bulk data, however, can make better use of

11n.

Our analyses shows that different GoAs may be better

served by different 802.11 variants. So, future deployments

may wish to exploit this through a parallel-mode deployment

of 11g and 11n, allocating these to different applications,

something which is not done today. Alternatively, applications

could be enabled to adapt their flow characteristics to match

802.11 variant capability.

Future work includes measurements with multiple clients

and dual-mode operation and use of different end-system plat-

forms, testing various other standards as well as an extended

trace analysis and comparisons with other traffic studies.
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