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Abstract—Cyber-physical production systems are engineered
systems that are built from, and depend upon, the seamless in-
tegration of computational algorithms and physical components.
In order to make these system interoperable with each other for
addressing Industry 4.0 applications a number of service-oriented
architecture frameworks are developed. Such frameworks are
composed by a number of services, which are inherently dynamic
by nature and thus imply the need for self-adaptation. In this
paper we propose generic autonomic management as a service
and show how to integrate it in the Arrowhead framework.
We propose generic and reusable interfaces for each phase of
the autonomic control loop in order to increase the usability of
the service for other frameworks and application systems, while
reducing the software engineering effort. To show the utility of
our approach in the Arrowhead framework we use a climate
control application as a representative example.

I. INTRODUCTION

Cyber-Physical Production Systems (CPPS), Internet of
Things (IoT), cloud computing are the drivers of Industry 4.0
and enable the creation of high-level services. E.g. a device,
even a single sensor, could produce a service. Services open
new business opportunities by increasing interoperability, sim-
plifying application development, abstracting the complexity
of underlying system, improving the end user experience, etc.

The Service-Oriented Architecture (SOA) is an approach
applied to distributed systems that employs loosely coupled
services, standard interfaces and protocols to deliver seamless
cross platform integration. In a SOA each component in the
system provides a service, which has a well defined set of
functionalities that does not depend on the state of other
services, known as service autonomy. Additionally, only the
service provider needs to know the logic of its service, that is
why the logic is abstracted through encapsulation, known as
service abstraction. These two features, service autonomy and
service abstraction, are relevant in the context of this paper
as they allow to treat services as autonomic components and
allow their self-adaptation. Each service has also a set of com-
municative meta-data, by which it can be discovered by service
consumers. Services comply to communication agreements as
defined in standardized service contracts and because they are
independent from any particular process they can be reused,
composed and decomposed to new configurations. Thus, SOA
is based on three main fundamentals: (i) loosely coupled,
which allows for dynamic provisioning or deprovisioning of
resources to maintain an effective load balancing mechanism,

(i1) late binding, which makes possible to use the service any
time by connecting to the correct resources and (iii) lookup,
which can be used to discover already registered services.

Self-adaptation can be used to deal with rapid changes in the
environment and in the system itself, by allowing the system
to gather knowledge at runtime and to apply the adaptation
policies in specific services. As mentioned above, service
autonomy and service abstraction features of SOA allow to
treat services as autonomic components. By adapting to system
changes with minimal intervention, the advantages of self-
adaptation (e.g. increased industrial uptime, more efficient
systems, ability to predict errors, etc.) will bring a new impact
on interoperable digital manufacturing platforms.

In this paper, we propose generic autonomic management
as a service. We build on our previous work on Generic Au-
tonomic Management Framework [1], which is a framework
that can be used to develop autonomic managers for any
target system without having the (re)implement the generic
control mechanisms, and extend it to support also SOA-based
frameworks. Given its generic property, the service can be used
by different application systems by changing the metrics and
adaptation policies, while reducing the software engineering
effort needed to implement the generic control mechanisms.

We show how to integrate generic autonomic management
service in the Arrowhead framework [2], since it is an ideal
support of the approach given its SOA nature. The Arrowhead
framework aims to facilitate the creation of local automation
clouds, which include devices, application systems and ser-
vices used to perform the automation tasks. This enables local
(on-site) real time performance and security, interoperability,
simple and cheap engineering, and scalability through multi-
cloud interactions. We consider climate control application as
a representative example to explain the utility of the proposed
service in the Arrowhead framework.

The remainder of this paper is structured as follows. Sec-
tion II presents a state of the art analysis of self-adaptation
approaches and adaptive SOA-based frameworks. Section III
introduces the Arrowhead framework and its core systems and
services. Section IV briefly introduces the GAMF framework
architecture. In section V we propose generic autonomic
management service and show how to integrate it in the
Arrowhead framework. We further explain its utility through a
representative example, a climate control application. Section
VI outlines the findings and the future work.



II. RELATED WORK

In this section we present the state-of-the-art related to self-
adaptation approaches and existing solutions on how is self-
adaptation applied in SOA-based frameworks.

A. Self-Adaptation Approaches

The complex CPPS are often exposed to various types of
uncertainties, e.g., changing environment conditions, unpre-
dictable user behavior, dynamically changing requirements and
goals of the system itself, etc. Since predicting such uncertain-
ties in the design phase of CPPS is difficult, they can affect
the system qualities, e.g., security, reliability, flexibility, etc.
Self-adaptation approach can be used to deal with uncertainties
in CPPS by allowing the system to gather knowledge at the
runtime. The engineering aspects of self-adaptive systems have
emerged over time.

1) Autonomic Computing (AC): The vision of Autonomic
Computing [3] has been first introduced by IBM to overcome
the issue of anticipating and designing interactions among
components in interconnected systems, leaving such issues
to be dealt with at runtime. The term autonomic is derived
from human biology, in which the autonomic nervous system
monitors the heartbeat, checks the blood sugar level and keeps
the body temperature constant without any conscious effort on
your part. However the main difference is that the decisions
made by autonomic capabilities in our body are involuntary,
whilst the autonomic capabilities in computer systems depend
on adaptation policies. The MAPE-K feedback loop is a closed
software component with interfaces to the physical world via
sensors and effectors, which consists of four phases (Monitor,
Analyze, Plan, Execute) and shared Knowledge.

2) Architecture-driven adaptation: The architecture-driven
adaptation mainly addresses the separation between change
management and goal management based on a 3-layer model.
The model consists of: (i) component control layer, which
makes easier to report the current status of components and
performs adaptations, (ii) change management layer, which
reacts to changes in state of the lower level by executing ac-
tions to handle the new situation, (iii) goal management layer,
which handles requests from the layer below and generates
plans based on high-level goals. Rainbow [4] is a architecture-
based self-adaptation framework with reusable infrastructure.
Rainbow uses an abstract model to monitor an executing
system’s runtime properties, evaluates the model for constraint
violation, and if a problem occurs performs adaptations on
the running system. StarMX [5] is also a architecture-driven
adaptation framework for developing self-managing software
systems. It is a generic configurable framework based on
standards and well-established principles, and provides the
required features and facilities for the development of such
systems. FORMS [6] is a formal reference model, which
provides a formally founded vocabulary for the key archi-
tectural constructs comprising self-adaptive systems instead
of an implementation framework from which self-adaptive
applications can be derived. It is based on three primary
aspects, reflectivity, MAPE-K and distributed coordination.

3) Model-driven adaptation: The model-driven adaptation
is based on runtime models as key elements to engineer self-
adaptive systems. A runtime model is a casually connected
self-representation of the system, which enables managing
the complexity of large amounts of information associated
with runtime aspects. A state of the art framework that
supports dynamic adaptation using model-driven approach is
Models @Run.Time [7]. FUSION [8] is a framework for engi-
neering self-adaptive systems, which uses a feature-oriented
system model to learn the impact of feature selection and
feature interactions on the system’s competing goals. It then
uses this knowledge to efficiently adapt the system to satisfy
as many user-defined goals as possible.

4) Goal-driven adaptation: The goal-driven adaptation is
mainly concerned with enabling languages and formalisms
to specify requirements for feedback loops for self-adaptive
systems, e.g., RELAX [9] language, and if feedback loops
constitute a solution for adaptation, identifying the require-
ments this solution intends to solve. The requirements that
should be addressed by feedback loops include e.g., runtime
success/failure/quality of other requirements.

5) Guarantees under uncertainty: An important concern
when dealing with self-adaptive systems is how to guaran-
tee adaptation goals under uncertainty by using e.g., formal
techniques at runtime such as ActivFORMS [10]. The formal
model is directly executed by a virtual machine to realize
adaptation. The approach assures that the adaptation goals that
are verified off-line are guaranteed at runtime, and it supports
dynamic adaptation of the active model.

6) Control-based adaptation: The control-based adaptation
is concerned with applying principles from the control the-
ory to realize self-adaptation, since control theory offers a
mathematical foundation to design and analyse self-adaptive
systems. E.g. DYNAMICO [11] is a reference model that im-
proves the engineering of self-adaptive systems by addressing
the management of adaptation properties as control objectives,
the separation of concerns among feedback loops required to
address control objectives over time, and the management of
dynamic context as an independent control function to preserve
context-awareness in the adaptation mechanism.

Self-adaptation is also related with other contributing disci-
plines, such as: (i) control theory, well-known principles of the
control theory, e.g. the optimal closed-loop control problem
(feedback control), can be applied to implement adaptive
managers, (ii) decision theory and utility, and (iii) artificial
intelligence, e.g. one issue in MAPE-K adaptation loop is that
static policies cannot deal with emergent situations that have
been unknown to engineers at the design time. This can be
improved by using deep learning algorithms, such as model-
based reinforcement learning (RL) [12]. An RL agent attempts
to learn the model of its environment simultaneously and
predicts the consequences of actions before they are taken.
Thus, it can improve the MAPE-k adaptation loop by bringing
policy evolution closer to real-world applications.



B. Adaptive SOA-based Frameworks

Engineering complex and dynamic CPPS requires alterna-
tive paradigms in system architectures, which should focus
on: (i) services over components, (ii) interoperability and
cross platform to deal with the level of diversity between
components, (iii) loose coupling to deal with the autonomy
of components and (iv) high level of abstraction to deal with
the complexity of such systems. SOA paradigm has evolved
as a solution to address these issues. The Service-Oriented
Solution Stack (S3) [13] provides a detailed architectural
definition of a SOA across nine layers, five horizontal and
four vertical layers, that aim to reinforce business value. The
horizontal layers (operational, service components, services,
business process and consumers) are associated with a SOA
application structure, whereas the vertical layers (integration,
QoS, information architecture and governance) are responsible
for cross-application aspects such as integration, security. Even
though the S3 model is widely used as a reference model,
several extensions to the original model have been done.

MetaSelf [14] is a framework for engineering dependable
self-adaptive systems based on a set of requirements, which
supports design-time and run-time aspects. The run-time en-
vironment is based on a service-oriented architecture, which
exploits metadata (data about the running system, e.g. its com-
ponents, infrastructure and environment) to support decision-
making and adaptation based on the dynamic enforcement
of explicitly expressed policies. Metadata and policies are
managed by appropriate services. SASSY [15] is a model-
driven framework for self-architecting service-oriented sys-
tems. Throughout the system’s life cycle, SASSY aims to
maintain an optimal architecture for satisfying functional and
quality-of-service (QoS) requirements. MOSES [16], similar
to SASSY, is a framework that supports QoS-driven runtime
adaptation of service-oriented systems. MUSIC [17] is a
framework and methodology for self-adapting applications in
ubiquitous computing environments, which supports several
adaptation mechanisms and offers a model-driven application
development approach supported by a sophisticated middle-
ware. It facilitates the dynamic and automatic adaptation
of applications and services based on a clear separation of
business logic, context awareness and adaptation concerns.

In this paper, we build on our previous work on self-
adaptation [1], [18], [19], [20] and enhance it to also support
SOA-based frameworks. Therefore, we propose to develop
generic autonomic management as a service, aimed to support
the application developers in building self-adaptive appli-
cations. In comparison with the aforementioned work the
proposed solution is intended to be generic, so that it can
be used in different SOA-based frameworks by a number of
application systems without requiring a high adjustment effort.

III. ARROWHEAD FRAMEWORK

The objective of the Arrowhead framework architecture
is to facilitate the creation of local automation clouds and
enable local real time performance and security, interoper-
ability, simple and cheap engineering and scalability through

multi cloud interaction [2]. The architecture is build based
on the SOA fundamentals and addresses the move from
large monolithic organisations towards multi-stakeholder co-
operations, thus addressing the high level requirements in
today’s society such as sustainability, flexibility, efficiency
and competitiveness. In terms of the Arrowhead framework, a
service is an information exchange from a service producer
system to a service consumer system. A system provides
and/or consumes multiple services and a hardware device is a
piece of equipment, machine or hardware with computational,
memory and communication capabilities, which can host one
or several systems. The Arrowhead framework architecture is
composed of a number of systems, including mandatory and
automation support core systems and application systems.

A. Arrowhead Local Cloud and Core Systems

The native environment of Arrowhead is the industrial au-
tomation domain. A factory is an application example, where
a limited number of interconnected sensors, controllers and
actuators work together on effectively assembling products.
This motivates the local cloud approach. As shown in Figure 1,
an Arrowhead local cloud is composed of the three mandatory
core systems and at least one application system.
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Fig. 1. Arrowhead Local Cloud. The Arrowhead local cloud is composed
of three mandatory core systems: (i) ServiceRegistry, (ii) Authorization, (iii)
Orchestration and at least one application system

The mandatory core systems include ServiceRegistry, Au-
thorisation and Orchestration systems. The ServiceRegistry
system is used to provide storage of all active services regis-
tered within a local cloud and enables the discovery of them.
The Authorisation system is used to provide authentication,
authorisation and optionally accounting of service interactions.
The Orchestration system is used to provide a mechanism
for distributing orchestration rules and service consumption
patterns, thus providing service endpoints to specific requests.

The automation support core systems such as, PlantDescrip-
tion, EventHandler, Workflow Manager etc., are used to facili-
tate automation application design, engineering and operation.
They should be able to support the implementation of plant
automation, housekeeping within the local cloud, inter-cloud
service exchange, system and service interoperability, etc. In
our previous work [21] we have developed SystemRegistry and
DeviceRegistry systems, which are needed for the on-boarding
procedure to create a chain of trust within the Arrwohead
framework. SystemRegistry is used to provide local cloud



storage for systems registered within Arrwohead, metadata of
these systems and their running services. DeviceRegistry is
used to provide local cloud storage holding the information
about devices registered in the Arrowhead, meta data of these
devices and the list of systems deployed on them. These sys-
tems are important to create a chain of trust from a hardware
device to a hosted software system and its associated services
during the on-boarding procedure. In this paper we propose a
new support core system for the Arrowhead framework, which
will produce a generic autonomic management service, used
to provide self-adaptation support within the local cloud.

B. Application Systems

The application systems are used to implement the con-
sumption/production of services aiming to fulfill application
requirements. They should be consuming at least the three
mandatory core services of the Arrowhead local cloud, thus
ServiceDiscovery produced by ServiceRegistry system, Au-
thorisationControl produced by Authorisation system and Or-
chestrationStore produced by Orchestration system, in order to
be Arrowhead compliant. The Arrowhead framework defines
three maturity levels for application systems: level-3, the
application system implements the consumption/production of
services without external components, level-2, the application
system implements the consumption/production of services
by using a software adapter, and level-I, the application
system uses dedicated hardware with software responsible for
wrapping the application system with Arrowhead framework
compliant services.

IV. GENERIC AUTONOMIC MANAGEMENT FRAMEWORK

The Generic Autonomic Management Framework (GAMF),
shown in Figure 2, is a Java-based framework used to develop
autonomic managers for any target system without having to
(re)implement the generic control mechanisms.
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Fig. 2.  GAMF Framework Architecture. GAMF provides generic control
mechanisms based on the autonomic control loop and a set of interfaces that
allow the interaction between the control mechanism and the system adapters

GAMF provides generic control mechanisms based on
the autonomic control loop and a set of interfaces to al-
low the interaction between control mechanism and system-
specific management components, the system adapters. System
adapters include event generators and effectors, which allow

interaction of the control mechanism with the target system, as
well as metric extractors and policy evaluators, which provide
the means for computing a specific response determined by
policies to an observed situation modelled by metrics. The
information about how a specific system adapter is triggered
is held in the system adapters registry.

We have previously used GAMF: (i) to build an auto-
nomic manager, which autonomously controls the maintenance
scheduling of the peer-set in individual Chord nodes, governed
by some high level policies [1], (i) to apply autonomic
management in a distributed storage service [18], (iii) to
provide a solution towards a flexible and secure end-to-end
communication in Industry 4.0 environments [19], and (iv)
to implement an autonomic manager, which autonomously
applies the most appropriate data transmission configuration
(DTC) in a MQTT infrastructure, depending on the application
security requirements and current system and environmental
conditions, with the aim to improve the trade-off between
data transmission security and performance [20]. In this paper
we propose to extend GAMF to support also SOA-based
frameworks, e.g. Arrowhead framework, by providing generic
autonomic management as a service.

V. GENERIC AUTONOMIC MANAGEMENT SERVICE

In this section we show how we intend to integrate generic
autonomic management in Arrowhead by proposing a new
support system, the Generic Autonomic Management System
(GAMS), which is based on the concept and our experience
with the self-adaptation framework presented in Section IV.
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Fig. 3. GAMS system in the Arrowhead framework, which produces the
GenericAutonomicManagement service

The GAMS system, shown in Figure 3, produces the Gener-
icAutonomicManagement service and consumes the three
mandatory core services of the Arrowhead framework pre-
sented in Section III. In addition, this system can consume
other support core services, such as plant description, work-
flow manager, etc., and application services to build the shared
knowledge properly by using semantics and ontologies that
already exist in the Arrowhead framework.

A. Climate Control Application

To show the utility of GAMS system within the Arrowhead
framework we consider a climate control application, shown
in Figure 4, as a representative example.



The climate control application is relevant for smart en-
vironments, e.g. smart factories, because having a constant
temperature in a production environment may be required
to achieve certain quality level of products. Thus, the goal
is to ensure optimal temperature conditions in a production
environment in an energy-efficient way. To achieve this a
temperature control loop is needed, which is used to keep a
constant temperature in a specific production environment. To
reduce the energy consumption the speed of an air fan can be
decreased or increased in case a specific threshold is exceeded.
Thus, the goal is to ensure optimal temperature conditions (e.g.
between 15°C and 25°C) for a production environment in an
energy-efficient way.
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Fig. 4. Climate Control Application

Lets assume we register the services properly in the Arrow-
head local cloud to create the temperature control loop. The
temperature sensor provides SensorData service, which can be
consumed by the controller to decrease or increase the speed
of an air fan via the ControlAirFan service. As mentioned in
Section III, each application system should consume at least
the three mandatory core systems to be Arrowhead compliant.
Thus, the services are registered in the ServiceRegistry system
after being authenticated and authorized from the Authoriza-
tion system and the service exchange is determined through
the Orchestration system. Upon instantiation the REST web
service ControlAirFan is called to activate the air fan. The
controller listen for changes from the temperature sensor.
If the temperature is below 15°C (temp_threshold_1) or
above 25°C (temp_threshold_2), the next step is triggered,
respectively the REST web service will be invoked to decrease
or increase the speed of the air fan. The temperature control
loop is executed in a loop and continuously controls the
temperature once the air fan is turned on.

However, in this application various issues can occur that
cannot be detected by the software controlling the air fan,
e.g. the air fan might be broken. In this case the controller
will try to decrease or increase the speed without reaching the
desired threshold, which will increase the energy consumption.
To address this issue we propose to use GAMS system, which
will monitor sensor data from physical devices and analyze if
the defined thresholds are met. In case they are not met an
adaption policy will be chosen and executed.

B. GAMS applied to the Climate Control Application

The GAMS system, shown in Figure 5, is designed as a
component-based REST service (GenericAutonomicManage-
ment service) that can be invoked by different SOA-based
frameworks. Additionally, given its generic property, each

component of the autonomic control loop has abstract inter-
faces that can be used by a number of applications systems.
Following, we show the utility of our approach through the
climate control application.
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Fig. 5. GAMS as a component-based web service, which produces the
GenericAutonomicManagement service and consumes the three mandatory
core services of the Arrowhead framework. The system can consume other
support core services, such as plant description, workflow manager, etc., and
application services to build the shared knowledge properly.

a) Monitor: The Monitor component constantly collects
monitoring data from the temperature sensor. The component
performs a pre-analysis based on the incoming sensor data
and context data stored in the SharedKnowledge. In case
there is a significant delta an event is generated. Despite the
application system that is using GAMS system, the Monitor
abstract interface contains the following functions:
monitor[servicelD ]

getSensorData(sensorData)
preAnalysis ()
generateEvent ()
updateSharedKnowledge ()

For example, if the temperature is below 15°C or above
25°C for more than 3 seconds (GAMS_threshold_1), respec-
tively a Temp_Low_Check_Event or Temp_High_Check_Event
is generated. The generated event is fed forward to the Analyze
component and stored in the SharedKnowledge.

b) Analyze: The Analyze component evaluates the events
received from the Monitor component with respect to the
requirements and context data in the SharedKnowledge. If the
requirements cannot be satisfied a change request including a
description of the metrics is send to the Plan component. The
Analyze abstract interface contains the following functions:
analyze[servicelD]

getRequired (required)
getContext(context)
getEvent(event)

extractMetric ()
updateSharedKnowledge ()



For example, metric Temp_High if more than 3 consecu-
tive Temp_High_Check_Event are stored in the SharedKnowl-
edge in 5 seconds and metric Temp_Low if more than 3 consec-
utive Temp_Low_Check_Event are stored in the SharedKnowl-
edge in 5 seconds (GAMS_threshold_2). If the requirements
are satisfied the normal execution proceeds.

c) Plan: The Plan component is able to understand the
metrics received from the Analyze component and to derive
adaptation policies. The Plan abstract interface contains the
following functions:
plan[servicelD ]

getMetric (metric)
addResource ()
releaseResource ()
updateSharedKnowledge ()

For example, if the temperature in a specific pro-
duction environment has not reached a certain threshold
(e.g. Temp_High) even though the controller is increasing the
speed via the ControlAirFan service, an alternative actuator
(e.g., air fan) can be activated, which can guarantee the desired
temperature in the room.

d) Execute: The Execute component receives the policies
from the Plan component and executes the derived action
via the GenericAutonomicManagement service. The Execute
abstract interface contains the following functions:
execute[servicelD ]

getPolicy (policy)
invokeNextAction ()
updateSharedKnowledge ()

effectorAdd [servicelD]
effectorRelease[servicelD ]

In case the system cannot find a suitable adaptation solution

(e.g. no additional resource is available) an user intervention
is required to handle the issue.

VI. CONCLUSION

In this paper we have proposed generic autonomic man-
agement as a service. We have shown how to integrate it in
the Arrowhead framework, since it is an ideal support of the
approach given its SOA nature. We have designed GAMS as
a component-based service that can be invoked by different
SOA-based frameworks without requiring a high adjustment
effort. Additionaly given its generic property, each component
of the autonomic control loop has abstract interfaces that can
be used by a number of application systems. This would
reduce the software engineering effort since there is no need
to (re)implement the generic control mechanisms for different
application systems, only to properly define events, metrics
and adaptation policies. To show the utility of our approach
we have used climate control application as a representative
example. As future work, we will evaluate it in different
application systems to show its usability.
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